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SUMMARY

The present paper is concerned with Saint-Venant’s problem for inhomogeneous and anisotropic elastic cylinders
when the elastic coefficients are independent of the axial coordinate. The paper points out the importance of the
generalized plane strain problem in the treatment of Saint-Venant’s problem.

1. Introduction

Most of the papers concerned with Saint-Venant’s problem are restricted to homogeneous or
piecewise homogeneous elastic cylinders. However, some investigations (see e.g. [1-3]) are
devoted to Saint-Venant’s problem for inhomogeneous cylinders when the elastic coefficients
are independent of the axial coordinate, and being prescribed functions of the remaining
coordinates. In this case, even within the theory of isotropic elastic solids, the problem is
difficult and it was entirely solved only when the Poisson’s ratio is constant.

In this paper we give a method to solve Saint-Venant’s problem for inhomogeneous and
anisotropic elastic cylinders which avoids restrictions of this type. This method is essentially
different from that of previous authors. The present paper points out the importance of the
generalized plane strain problem in the treatment of Saint-Venant’s problem. It is shown that
the well known torsion function derives from a special problem of generalized plane strain.

2. Statement of the problem

Throughout this paper a rectangular coordinate system Ox, (k=1, 2, 3) is used. We consider
a cylindrical body of inhomogeneous and anisotropic elastic material which occupies the region
V of space, whose boundary is S. We suppose that the considered cylinder is bounded by plane
ends perpendicular to the generators. We denote by L the boundary of the generic cross-section
2. Throughout this paper the axis Ox; of our coordinate system will be directed parallel to the
generators of the cylinder. The cylinder is assumed to be of length [, and one of its bases is taken
to lie in the x, Ox,-plane, while the other is in the plane x;=1. We shall employ the usual
summation and differentiation conventions: Greek subscripts are understood to range over
the integers (1, 2) whereas Latin subscripts—unless otherwise specified—are confined to the
range (1, 2, 3); summation over repeated subscripts is implied and subscripts preceded by a
comma denote partial differentiation with respect to the corresponding Cartesian coordinate.
The linear theory of classical elasticity is considered.

Let u; denote the components of the displacement vector field. Then the components of the
infinitesimal strain field are given by

eij= %(ui’j‘i‘uj’i) . , (21)
The stress-strain relations in the case of an anisotropic elastic medium are
tij= Cijueu, (2.2)

where ¢;; are components of the stress tensor and C;;, are the components of the elasticity
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tensor which obey the symmetry relations
Cija = Cjin= Cuyj - (2.3)

We assume that the elasticity tensor is positive definite on V. Taking into account (2.1) and
(2.3) the relations (2.2) can be written in the form

tij = Cijal,1 - (2.4)
In this paper we consider an inhomogeneous medium for which we have
Ciim= Ciju (xy, x2) . (2~5)

We assume that the domain ¥ is C*-smooth [4] and the functions C,;, are supposed to
belong to C*. We consider only a “C®-theory” but it is possible [4] to get a classical solution
of the problem for more general domains and more general assumptions of regularity for
the above functions (see e.g. [4], [5]). We have preferred this way in order to emphasize our
method for solving the considered problem.

The equations of equilibrium, in the absence of body forces, are

0. (2.6)

The considered cylinder is supposed to be free from lateral loading, so that the conditions on
the lateral surface are

ton,=0, 2.7)

where (1, n,, 0) are the direction cosines of the exterior normal to lateral surface.

Saint-Venant’s problem consists in the determination of the equilibrium of the considered
cylinder which—in the absence of body forces—is subjected to surface tractions prescribed
over its ends and is free from lateral loading. The treatment of this problem rests on a relaxed
formulation in which the detailed assignment of the terminal tractions is abandoned in favour
of prescribing merely the appropriate stress resultant. We assume that the load of the beam is
distributed over its ends in a way which fulfills the equilibrium conditions of a rigid body. Let
the loading applied on the end located at x; =0 be statically equivalent to a force P(P;) and
a moment M (M,). In what follows, for convenience, the problem of extension, bending and
torsion is treated separately.

t

i,

3. The generalized plain strain. Auxiliary plane strain problems

We define the state of generalized plane strain of the considered cylinder to be that state in
which the components of the displacement vector depend only on x; and x,

u; = u;(xq, X,) . (3.1)
The above restriction implies that e;;=e;;(x,, x,), t;;=1;;(x, x,). Further,

2005 = Up ptUpa, 203=2e3,=1Us,, €3=0, (3.2)

tia= Ciapls,p » (3.3)

t33= Caaplhy,p - (3.4)

As a consequence of these relations, the equations of equilibrium, with the body forces f;,
take the form

tiu,a +f; = 0 5 (35)

from which it follows that the state of generalized plane strain demands that the components of
body force be independent of x5. Let us assume that on the lateral surface of the cylinder we
have the boundary conditions
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tiyBy = D; - (3.6)

Obviously the surface traction must be independent of x;. The value of the stress ¢35 can be
calculated after the displacement components are determined.

The generalized plane strain for homogeneous bodies was considered in various papers (see
e.g. [6], [7]) under the assumption that f; = p; =0. This restriction is superfluous. The question
of the possibility of generalized plane strain in the considered elastic body will be answered in
the affirmative sense even if f; and p; do not vanish.

The conditions of static equilibrium for the considered cylinder become

fsfido 4§ pds =0, [sep3x,fado + fpep3%,ppds =0, ;
fsx,f3do + [, x,psds = fst,3do, (3.7)

where ¢, is the alternating symbol. The last two conditions (3.7) are identically satisfied on the
basis of the relations (3.5), (3.6); thus

frtizdo = [s[ts+x,(tsp, 5+ 13)1do = 5[ (X t35), 5+ X, f3]do =
= [ X,P3ds + {5y x,f3do .

Let us study the existence of the solution of the considered problem. We introduce the opera-
tors

Aju= —(Cipathi,2) 4, (3.8)
where u=(uy, u,, u3). If we denote

f=U.1013), Au=(A,u, Ayu, Asu), (39
the equilibrium equations can be written in the form

Au=f, on X. (3.10)

Let t(u) be the stress vector, with the components

ti(u) = tiyn, = Ciyptiy g, . (3.11)
The boundary conditions (3.6) can be written in the form

tuy=p on L, (3.12)

where p=(p,, p,, p)-
The functions f; and p; are supposed to belong to C®. Let u and v be two vectors of elastic

displacements. Integrating by parts, we obtain

JsvAudo =2 [y W(u, v)do — f vt(u)ds, (3.13)
where

2W(u, v) = Ciypein(t) exp(v) = Cimpths Vs g » (3.14)
is a bilinear form in the components of the deformation, corresponding to the quadratic form

2W(u) = Ciypein(u) ey (), (3.15)

which represents twice the potential energy density of the elastic deformation. This form is
positive definite, so that

2W(u) = poeimeins o >0 (po = const.). (3.16)

If u? is the solution of the homogeneous boundary value problem (3.10), (3.12), from (3.13),
(3.16) we obtain

0 0 0
ua,ﬂ+uﬂ,a:0a u3,a=01

so that
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ug = a,+be,gixs, uy=a,, (3.17)

where a;, b are arbitrary constants.
We consider the homogeneous boundary condition

tuy=0on L. (3.18)

To prove the existence theorem for the boundary value problem (3.10), (3.18), as in [4, p. 381],
we consider the system

Au+pou=f, (3.19)

where p, is an arbitrarily fixed positive constant. Firstly, we give an existence theorem for the
boundary value problem (3.19), (3.18). Using (3.13), (3.15) it follows [4] that the inequality to
be proven in this case is the following

fsenendos + [yurdo = collull?, cg >0, (co= const), (3.20)

for any ue H, (X). By H,(Z) is denoted the Hilbert function space obtained by the functional
completion of C*(X) with respect to the scalar product

(u, v)y = [y D*uD’vdo, (0<s<1).
Using the second Korn’s inequality [4], we can write

frepiepdo + [z () do = ¢ JuP|}, ¢y >0, (c; =const), (3.21)
where u'V=(uy, u,, 0). If we denote u'®=(0, 0, u;) we have

fresesado + [y () do > glu?|7 . (3:22)

From (3.21), (3.22) follows (3.20). Thus the boundary value problem (3.19), (3.18) has only one
solution which is C® in X. The differential operator is formally self-adjoint, so that a C®
solution in X of the following system

Autpu—du=f, ' (3.23)
with the boundary condition (3.18) exists if and only if
fsfu*do =0, (3.24)

where u* is any solution belonging to C*(Z) of the problem (3.23), (3.18) with f=0. In the case
when A=p, the only C*(Z) solution of the homogeneous system is (3.17). Thus we have
Theorem 3.1. The boundary value problem (3.10), (3.18) has solutions belonging to C*(Z) if
and only if the C*® vector f satisfies the conditions

Jsfido =0, [ye.5x,fpdo=0. (3.25)

Let us consider now the case of the inhomogeneous boundary condition. We assume that the
C* vector  satisfies the condition

t(y)=p on L.

Let us introduce the vector w by the relation w=u—. Then w satisfies the equation
Aw=f—AY, (3.26)

and the homogeneous boundary condition (3.18). The necessary and sufficient conditions for
the existence of the solution of the boundary value problem (3.26), (3.18) are

Js(fi—Aip)do =0, jzsaﬂ3xa(fﬂ_Aﬁl//)dJ =0.
It is easy to show that

fsAppdo = — f, p;ds, jlsaﬁ3xaAﬁl/de == jL£aﬂ3xapﬂds’
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Thus, the necessary and sufficient conditions for the existence of the solution of the generalized
plane strain problem are

fsfido + [Lpids =0, [sep3x,fpdo + f1ep3%,psds =0. (3.27)

" The existence theorems in the case of homogeneous solids were established in [8].

We will have the opportunity to use four special problems, P® (s=1, 2, 3, 4), of generalized
plane strain. In what follows we denote by v{%, ¢ the components of the displacement vector
and the components of the stress tensor from the problem P®. The problems P*) are character-
ized by the equations

o) = Ciarpg ¥ 5 : (3.28)
08 +(Cia33%p) o« = 0, (3.29)
02+ Cia33,a =0, (3.30)
and the boundary conditions

0t~ 0p3(CinpaXp) . =0 on Z, (3.31)
on, = —Ciz3xphy (3.32)
adn, = —Cisshy, ' (3.33)

0n, = €,53Cigp3Xgn, on L. (3.34)

It is easy to show that the necessary and sufficient conditions (3.27) for the existence of the
solution of the problem P® are satisfied. In what follows we assume that the functions v{® and
¢ are known. :

When the material is isotropic, then

Cijrr = 40,00+ 1(0u 0+ 06435) , (3.35)

where 1 and y are the Lamé moduli. It is easy to see that for homogeneous and isotropic solids
the solutions of the problems P* are

A y)

p) - 2_ .2 (€3 I ) _
1 4(1_'_#) (xl x2)9 v 2(/1_'_#) X1Xa, U3 07
A
p ) - _ 2) — 2_ 2 v 2) —
1 2(1_'_#) X1X32 5 vZ 4(1_'_#) (xl x2)3 3 0>
A
0P srxe P00 a9=0, o —olux). (39

where ¢ is the solution of the boundary value problem

®.a=0o0n2; @ N =E¢,x,n5 0n L. (3.37)
4. Extension, bending and torsion
Let the loading applied on the end located at x5 =0 be statically equivalent to a force P(0, 0, P;)

and a moment M (M,, M,, M;).
Thus, for x; =0 we have the following conditions

Jstyado =0, 4.1)
Jstzzdo = — Py, 4.2)
f3x,t33do = e33 M, 4.3)
Jre3apX,tpado = —M; . 4.4)
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The resultant forces and moments calculated across each cross section satisfy the conditions
of equilibrium, so that the conditions (4.1)—(4.4) must be satisfied for x;=h (0< h< ).

The problem consists of solving the equations (2.4), (2.6) with the conditions (2.7), (4.1)-(4.4).
We try to solve the problem assuming that

4
i 2
Uy = — 30, X3— a5 Xp X3 + 3 At
s=1
4
us =(a,x,+a, X, +az)xs + Y, a;vf, (4.5)
s=1

where v® are the components of the displacement vector from the problem P® (s=1, 2, 3, 4)
and g, are unknown constants. From (4.5) we get

4
Uy = G, X3043— A4 €03 X3 0xp + z a, vy, ,
s=1
U3 = (@ Xy +ay X +3) 043 — 04, @, X3 — 0, An Erp3 X - (4.6)

The components of the stress tensor have the form
4
ij= Cipalay x1 +ayx; +a3)— CijazapadaXp + z asUS‘) ) (4.7)
s5=1

t

where ¢{ are the components of the stress tensor from the problem P,

The equilibrium equations (2.6) and the boundary conditions (2.7) are satisfied on the basis
of the relations (3.28)—(3.34). The conditions (4.1) are identically satisfied on the basis of the
equilibrium equations and the boundary conditions (2.7); thus

Ssty3do = f5(taa+x,t3p5)do = [5(x,t3p) ydo = fLx,t3pnyds = 0.
From (4.2)—(4.4) we obtain the following system for the unknown constants

4
z Lasas = 8&/}3MB s

s=1

4 4
z L3sas: —P3 ) z L4sas= _M3 P (48)
s=1 =1

s

where we used the notations

L,y = s x,[C3333x5+0Y3 ]da,

Ly = fs%,[C3333+053]da,

Loa = 5%, [Ca3p3 85,3 % +05] ]do ,

Ly, = [5[C3333x,+ 053 ] do ,

Lyz = f3[C3333+053]do,

Lys = [5[Cazu38pu3 xp+ 054 ]do,

Ly = [5[Cra33xi = C333 %1 X3+ 35 X, 055 1 da

Ly={s [C2333x1x2—cl333x%+83aﬁxa05323)]d0- ’

Lz = §5[Ca333%1 = Ci333 X2 + €355 X, 043 | do

Lya=f5[Ca323 %1 =2C323%; X3+ C1313X5 + 8349 %, 053 ]do . 4.9)

Let us prove that the system (4.8) determine uniquely the constants a,. We assumed that the
internal energy density
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U(u) = %Cijkleijeki > (4~10)

is a positive definite quadratic form.
Let us consider two elastic states {u;, e;; t;;} and {u}, e}, t;}. If we denote

2U (W, u") = tief;, (4.11)
it follows that

U, v)=U@"v), U u)=U(). (4.12)
Then Betti’s formula leads to

2§, U, u")dv = [gtiuido = fstiuido . (4.13)
Obviously, we have

2§, Uu)dv = fgtu;do . (4.14)

The relations (4.5), (4.7) can be written in the form

4 4
w= Y au®, t;= Y at?, (4.15)
=1 =1

where

Ul = —4x36,, 40P, uf = x3x,4+0Y,

U =63 x3+v, UM =g axx+0P, uf =P,

87 = Cizsxa+0ff, 1= Cstof,

1D =0lP—Cijuztapsxy . (4.16)
It is easy to show that

4
Y. U,a,a,, 4.17)
r,s=1

where

U,,=Uu” uN=1U,, (r,s=1,2,3,4). (4.18)

The total energy is
ég IV Z Ers r (419)
r,s=1

where

E .= [, U,dv. (4.20)
We note that

#,=0on X, t¥n,=0o0n L, (s5=1,23,4). (4.21)

In view of these relations we get

f5 1S do = (s=1,2,3,4). (4.22)
Let us apply the relations (4.13), (4.14) to the elastic states {u{®, e, £!7}, (s=1, 2, 3, 4). Using

the expressions of u{”, 1{ given by (4.16) and the relations (4.22) we obtain
y

2E, =1L, (r,5=123,4). ' (4.23)
Thus, with the help of (4.17), (4.18), (4.23) we conclude that
L,=L, det (Lrs) >0, (424)

so that the system (4.8) determines uniquely the constants a,. The considered problem is solved.
On the basis of (3.36) it is easy to see that for homogeneous and isotropic solids the constants
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L, reduce to
Lzzl} = Ejzxaxﬂda = EIal} 5 Lzz3 - EAXS > L33 = EA ) Li4 = 0 s
L44=Il.[z(x%+x%+x1¢,2‘x2¢,1)d‘75D, (4.25)

where E is Young’s modulus, A4 is the area of the cross section and x? are the coordinates of the
centroid of . The constant L,, is known as “torsional rigidity”, and in most texts it is design-
ated by D. In this case the system (4.8) becomes

1 .
Iaﬂ aﬂ+Ax2a3 =5 E 8aﬁ3 Ml} 5 . (426)

1

a;x{+a,x5+ay= — i

P,
Da4 = — M3 .
The constant a, is often denoted by t and the function ¢ is known as the torsion function.

5. Flexure

The same calculation as in the treatment of the complete problem is implied in order to solve the
flexure problem. For this reason we shall assume that the loading applied on the end x;=01is
statically equivalent to a force P(P;) and a moment M (M;).

Thus, for x;=0 we have the conditions

.[Eta?ada: _Paa (51)
Jstssdo = — Py, (5.2)
.[Exat33do- = 8a1}3 Ml} > (53)
S5 €3upXotpzdo = —M; . (54)
On the end located in the piane x3=1 we have the conditions
.[Eta3da: _Pa7 (55)
Jst3zdo = — Py, (5.6)
fxxat33do = e,55Mp— 1P, , (5.7)
JresapXatgzdo = —M;. (5.8)

The problem consists in the solving of the equations (2.4), (2.6) with the conditions (2.7),
(5.1)~(5.8).
We try to solve the problem assuming that
U, = _%aax%_a48aﬂ3xﬂx3_%bax§ _%b4£aﬂ3xﬂx§ +

4
+ (as+x3bs)vy)+va(x19 xl)’
=1

s

uy = (a;x, +a2x2+a3)x3+%(b1x1+b2x2+b3)x§ +
4
+ Z (as+x3bs)v(3S)+U3(xla x2)a : (59)
s=1
where v are the components of the displacement vector from the problems P (s=1, 2, 3, 4),
v, are unknown functions and 4,, b, (r=1, 2, 3, 4) are unknown constants.
From (2.4) and (5.9) we obtain
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tiy= Cipsla; x; +a,x;4+a3)— Cijp3ap3as Xp+ Cijaz(by x +by x5 +
4
+b3)x3—Ciastapsbaxgxs + 3 (a,+x3b,)0) +545+kij, (5.10)
s=1
where
4
Sij - Cijkﬂvk’lg, kU = Cijk3 Z bsvés) . (511)
s=1
The relations (5.10) can be written as
ty=mi) +x3mij) (5.12)
where
4
nﬁ?) = Cijaz(a; X +ay X, +a3)— Cijp3ap3 04 X + Y as6§;)+sij +k;;,
s=1
4
ng}) = Cyj33(by x; +b2x2+b3)—cija38aﬂ3b4xﬂ + Z bsag) . (5.13)
s=1

The conditions (5.2)—(5.4) and (5.6)(5.8) are equivalent with the following conditions

JsnRdo =0, [yx,n83do= —P,, [ses,5X,n54do =0, (5.14)
jx”(303)d0 = —P;, jxxangogda = 8aﬂ3Mﬂ"
freaupx,middo = —Mj . (5.15)

From (5.13) and (5.14) we obtain the following system for the unknown constants b,
4
Y Lib=—P5,, (r=1,234), (5.16)
s=1
where L, are given by (4.9) and satisfy (4.24). In what follows we assume that the constants b,
are known.
Consider now the equilibrium equations. From (2.6), (3.29)—(3.31), (5.10) we obtain

SmatF,=0o0n X, (5.17)
where o

Fi=n+kip . (5.18)
On the basis of the relations (3.32)—(3.34) the conditions on the lateral surface (2.7) reduce to

Siahy = —kign,on L. (5.19)

We consider the generalized plane strain problem (5.11), (5.17), (5.19). It is easy to show that the
necessary and sufficient conditions to solve this problem are satisfied on the basis of the
relations (5.16), (4.22). In what follows we assume that the functions v;, s;; are known.

Let us consider now the conditions (5.15). From (5.13) and (5.15) we obtain the following sys-
tem for the constants a,

4
Z Las as = 83aﬂMB - jE an33dJ 5
=1

s

4
Z Ljsa; = ~ Py — [5S33da,
s=1
4
ZL4sas= —M; — |y 83aﬂanﬂ3dJ 383 = Si3 + ki3 (5-20)
1

s=

The conditions (5.1) and (5.5) are identically satisfied on the basis of the relations (5.14); thus
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[styado = [5(t,;3+x,t3; ;)do = [ X, tagngds + [5X,t33 3do =
= IExanglii)da = _Pa .

The considered problem is solved.
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