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SUMMARY 
The present paper is concerned with Saint-Venant's problem for inhomogeneous and anisotropic elastic cylinders 
when the elastic coefficients are independent of the axial coordinate. The paper points out the importance of the 
generalized plane strain problem in the treatment of Saint-Venant's problem. 

I. Introduction 

Most of the papers concerned with Saint-Venant's problem are restricted to homogeneous or 
piecewise homogeneous elastic cylinders. However, some investigations (see e.g. [1-3])  are 
devoted to Saint-Venant's problem for inhomogeneous cylinders when the elastic coefficients 
are independent of the axial coordinate, and being prescribed functions of the remaining 
coordinates. In this case, even within the theory of isotropic elastic solids, the problem is 
difficult and it was entirely solved only when the Poisson's ratio is constant. 

In this paper we give a method to solve Saint-Venant's problem for inhomogeneous and 
anisotropic elastic cylinders which avoids restrictions of this type. This method is essentially 
different from that of previous authors. The present paper points out the importance of the 
generalized plane strain problem in the treatment of Saint-Venant's problem. It is shown that 
the well known torsion function derives from a special problem of generalized plane strain. 

2. Statement of the problem 

Throughout  this paper a rectangular coordinate system Ox k (k = 1, 2, 3) is used. We consider 
a cylindrical body ofinhomogeneous and anisotropic elastic material which occupies the region 
V of space, whose boundary is S. We suppose that the considered cylinder is bounded by plane 
ends perpendicular to the generators. We denote by L the boundary of the generic cross-section 
I7. Throughout  this paper the axis Ox 3 of our coordinate system will be directed parallel to the 
generators of the cylinder. The cylinder is assumed to be of length l, and one of its bases is taken 
to lie in the x 10x2-plane, while the other is in the plane x 3 --I. We shall employ the usual 
summation and differentiation conventions: Greek subscripts are understood to range over 
the integers (1, 2) whereas Latin subscripts--unless otherwise specified--are confined to the 
range (1, 2, 3); summation over repeated subscripts is implied and subscripts preceded by a 
comma denote partial differentiation with respect to the corresponding Cartesian coordinate. 
The linear theory of classical elasticity is considered. 

Let u i denote the components of the displacement vector field. Then the components of the 
infinitesimal strain field are given by 

eli  = j + (2.1)  

The stress-strain relations in the case of an anisotropic elastic medium are 

tij = Cijklekl, (2.2) 

where t~j are components of the stress tensor and C~jkr are the components of the elasticity 
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tensor which obey the symmetry relations 

C i j k l  = C j i k l  = C k l i j  . (2.3) 

We assume that the elasticity tensor is positive definite on V. Taking into account (2.1) and 
(2.3) the relations (2.2) can be written in the form 

tij = Ci ju  Uk, l .  (2.4) 

In this paper we consider an inhomogeneous medium for which we have 

Ci~u = Cijk, ( x l ,  x2)  . (2.5) 

We assume that the domain S is C~-smooth [-4] and the functions C~k~ are supposed to 
belong to C ~176 We consider only a "Coo-theory" but it is possible [-4] to get a classical solution 
of the problem for more general domains and more general assumptions of regularity for 
the above functions (see e.g. [4], [5] ). We have preferred this way in order to emphasize our 
method for solving the considered problem. 

The equations of equilibrium, in the absence of body forces, are 

tij ' j = O. (2.6) 

The considered cylinder is supposed to be free from lateral loading, so that the conditions on 
the lateral surface are 

ti~ n~ = 0 ,  (2.7) 

where (nl,/'/2, 0) are  the direction cosines of the exterior normal to lateral surface. 
Saint-Venant's problem consists in the determination of the equilibrium of the considered 

cylinder which--in the absence of body forces--is subjected to surface tractions prescribed 
over its ends and is free from lateral loading. The treatment of this problem rests on a relaxed 
formulation in which the detailed assignment of the terminal tractions is abandoned in favour 
of prescribing merely the appropriate stress resultant. We assume that the load of the beam is 
distributed over its ends in a way which fulfills the equilibrium conditions of a rigid body. Let 
the loading applied on the end located at x3 = 0  be statically equivalent to a force P(P~) and 
a moment M ( M ~ ) .  In what follows, for convenience, the problem of extension, bending and 
torsion is treated separately. 

3. The generalized plain strain. Auxiliary plane strain problems 

We define the state of generalized plane strain of the considered cylinder to be that state in 
which the components of the displacement vector depend only on x 1 and x2 

u i : ui (xl, xz).  (3.1) 

The above restriction implies that % =  e i j ( x l ,  x2), hj = t z j (x l ,  x2). Further, 

2e~, = u~,a+u,,~, 2e~3 = 2e3~ = u3. , ,  e33 = 0 ,  (3.2) 

tin = Ci~k~Uk, p , (3.3) 

t33----- C 3 3 k f l U k ,  fl �9 (3.4) 

As a consequence of these relations, the equations of equilibrium, with the body forces f ,  
take the form 

+f ,  = o ,  (3.5) 

from which it follows that the state of generalized plane strain demands that the components of 
body force be independent of x 3. Let us assume that on the lateral surface of the cylinder we 
have the boundary conditions 
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ti~ G = P i .  (3.6) 
Obviously the surface traction must be independent of x3. The value of the stress t33 can  be 
calculated after the displacement components are determined. 

The generalized plane strain for homogeneous bodies was considered in various papers (see 
e.g. [6], [7] ) under the assumption that f3 = P3 = 0. This restriction is superfluous. The question 
of the possibility of generalized plane strain in the considered elastic body will be answered in 
the affirmative sense even if f3 and P3 do not vanish. 

The conditions of static equilibrium for the considered cylinder become 

~ f i d a  + ~LPidS = O, SzG133x~f#da + SLG~3x~p~ds = O, 

~zx~f3 da + ~L x~p3 ds = ~S G3 da , (3.7) 

where eijk is the alternating symbol. The last two conditions (3.7) are identically satisfied on the 
basis of the relations (3.5), (3.6); thus 

~, G3 dff = ~z [G3 + x, (t3B ' a +f3)]  da = S~ [(x~ t3~), # + x~f3] da = 

= ~tx~p3ds + ~sx~f3da.  

Let us study the existence of the solution of the considered problem. We introduce the opera- 
tors 

= (3 .8 )  

where u = (u 1, u2, u3). If we denote 

f = ( f a , f z ,  f3), Au = (A~ u, A2u, A3u) , (3.9) 

the equilibrium equations can be written in the form 

Au = f ,  on 2 .  (3.10) 

Let t(u) be the stress vector, with the components 

ti(u ) = ti~ G = Ci~kt~Uk, a G .  (3.11) 

The boundary conditions (3.6) can be written in the form 

t(u) = p on L ,  (3.12) 

where P=(Pl ,  P2, P3). 
The functions fi and p~ are supposed to belong to C ~. Let u and v be two vectors of elastic 

displacements. Integrating by parts, we obtain 

~z vAuda = 2 ~s W(u, v)da - SL vt(u)ds ,  (3.13) 

where 

2W(u, v )=  Ci~kl3eia(U)ek#(V ) = CictkflUi,~Vk, fl , (3.14) 

is a bilinear form in the components of the deformation, corresponding to the quadratic form 

2W(u) = C~k~ ei~ (u) ektj (U), (3.15) 

which represents twice the potential energy density of the elastic deformation. This form is 
positive definite, so that 

2W(u) >=poei~ei~, #o >0 (#o = const.). (3.16) 

If u ~ is the solution of the homogeneous boundary value problem (3.10), (3.12), from (3.13), 
(3.16) we obtain 

o + u ~ = O  u ~ = 0  

so that 
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U ~  U 0 = a 3 ,  

where a~, b are arbitrary constants. 
We consider the homogeneous boundary condition 

t ( u ) = O  on L .  

D. Ie~an 

(3.17) 

(3.18) 
To prove the existence theorem for the boundary value problem (3.10), (3.18), as in [4, p. 381], 
we consider the system 

A u + p o u  = f  , (3.19) 

where Po is an arbitrarily fixed positive constant. Firstly, we give an existence theorem for the 
boundary value problem (3.19), (3.18). Using (3.13), (3.15) it follows [-4] that the inequality to 
be proven in this case is the following 

.[sei~,ei~,do + .fsu2da > collull~, Co > 0 ,  (Co = const.), (3.20) 

for any u ~ H 1 (X). By H1 (22) is denoted the Hilbert function space obtained by the functional 
completion of C 1 (S) with respect to the scalar product 

(u, 0 1 =  f.s Dsuosvdcr ,  ( O < s <  l ) .  

Using the second Korn's inequality [4], we can write 

.[xea~,et~,dcr + j's(utl))2do " >= c 11[u~ 2 , c 1 > 0 ,  (c 1 = const.), (3.21) 

where u(X)=(ui, U2, 0). If we denote U(2)=(0, 0, U3) we have 

Is do + Is (u*2)) 2 > �88 u II (3.22) 

From (3.21), (3.22) follows (3.20). Thus the boundary value problem (3.19), (3.18) has only one 
solution which is C ~ in Y,. The differential operator is formally self-adjoint, so that a C ~ 
solution in 2 r of the following system 

Au + Po u - 2u = f ,  (3.23) 

with the boundary condition (3.18) exists if and only if 

Ss f u *  da = 0,  (3.24) 

where u* is any solution belonging to C ~ (r) of the problem (3.23), (3.18) with f =  0. In the case 
when 2=po the only C~(Y,) solution of the homogeneous system is (3.17). Thus we have 
Theorem 3.1. The boundary value problem (3.10), (3.18) has solutions belonging to C~~ if 
and only if the C ~ vector f satisfies the conditions 

Is f~da = O, I z s ~ j  x~fpda = O. (3.25) 

Let us consider now the case of the inhomogeneous boundary condition. We assume that the 
C ~ vector O satisfies the condition 

t(0 ) = p  on L .  

Let us introduce the vector w by the relation w= u - ~ .  Then w satisfies the equation 

Aw = f - A ~  , (3.26) 

and the homogeneous boundary condition (3.18). The necessary and sufficient conditions for 
the existence of the solution of the boundary value problem (3.26), (3.18) are 

I s ( f i - A , O ) d a  = O, I s e ~ p 3 x ~ ( f p - A a O ) d a  = O. 

It is easy to show that 

~sAi~kda = _ [.Lpids, ~ze~a3x, A p ~ d a  = _ ~Le~p3x~pads. 
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Thus, the necessary and sufficient conditions for the existence of the solution of the generalized 
plane strain problem are 

~f~do- + SLp~ds = O, S~e,a3x,fpdo- + ~Le,p3x~pads = 0. (3.27) 

�9 The existence theorems in the case of homogeneous solids were established in [8]. 
We will have the opportunity to use four special problems, P(~) (s = 1, 2, 3, 4), of generalized 

plane strain. In what follows we denote by vl ~), o-l~, ) the components of the displacement vector 
and the components of the stress tensor from the problem pO). The problems P(~) are character- 
ized by the equations 

o-l~ ) = c ,~k~ ~(~)p , 

o-!fl) 4"(Cia33X~) ,a  = O, 

.(3) 

and the boundary conditions 

a(4) o 0 on 27 i,, ~ -  o,,p3 (G~,,3 x~) ,~ = 

o-!~)n, = - C ~  xp n , ,  

o-l~)n~ = - c ~  n ~ ,  

O.(4) n ia ct ~-- ~'pfl3 Cictp3 xfl rl~ o n  L .  

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

It is easy to show that the necessary and sufficient conditions (3.27) for the existence of the 
solution of the problem P(') are satisfied. In what follows we assume that the functions vl s) and 
o-l~ ) are known. 

When the material is isotropic, then 

Czjk~ = 26Zj6k~ + # (6ik 6jZ + 6U 6~k) , (3.35) 

where )~ and/z are the Lam6 moduli. It is easy to see that for homogeneous and isotropic solids 
the solutions of the problems P(~) are 

2 2 
/')(11)- 4(2+#) (X2--Xl), V(21)-  2(~+#) X1X2 , V(1) = O, 

2 2 
t3 ~2) __ 2(2+#) x l x z '  v(~2) - 4 ( 2 + # ) ( x ~ - x 2 ) '  v(3 2) = O, 

2 
~(?) - 2 ( x + ~ , )  x , ,  ~(~) = o ,  , ( 2  ) = o, ~(~) = ~o(~ , ,  x ~ ) ,  (3.36) 

where ~0 is the solution of the boundary value problem 

q~,~,~ = 0 on Z ; ~0,~,n~, = e#o~3xc~n # on L .  (3.37) 

4. Extension, bending and torsion 

Let the loading applied on the end located at x 3 = 0 be statically equivalent to a force P(0, 0, P3) 
and a moment M (M l, Mz, M3). 

Thus, for x3 = 0 we have the following conditions 

S,~ t~3 da = O, 

S~ t33 do- = - t"3 ,  

~x~t33da : g~3M/~ , 

~X ~'3a~ X~ t#3 da = - -  M 3 . 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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The resultant forces and moments calculated across each cross section satisfy the conditions 
of equilibrium, so that the conditions (4.1)-(4.4) must be satisfied for x 3 = h  (0< h<  1). 

The problem consists of solving the equations (2.4), (2.6) with the conditions (2.7), (4.1)-(4.4). 
We try to solve the problem assuming that 

4- 
1 2 

u~ = - g a ~ x 3 - a , , e ~ a 3 x ~ x  3 + ~ a~v~ ~) 
s = l  

4 
u3 = ( a , x , + a 2 x z + a 3 ) x 3  + Z a,v (~)3 , (4.5) 

S=I 

where vl s) are the components of the displacement vector from the problem P(~) (s = 1, 2, 3, 4) 
and as are unknown constants. From (4.5) we get 

4- 

Uk,ct : aax3(~k3--a4gfla3x3(~kfl nt- E 1)(s) as k,~ , 
s= l  

Uk,3 = (al x l + a2 X z + a3)ak3 -- ~Sk~a~x 3 - -  ak~a4g=fl3 X f l .  (4.6) 

The components of the stress tensor have the form 
4 

tij = Cij33(alxl  +azxz+a3)--Cij~38af13a4xfl '}- E asoij-(*), (4.7) 
s = l  

where o-l} ) are the components of the stress tensor from the problem P(*). 
The equilibrium equations (2.6) and the boundary conditions (2.7) are satisfied on the basis 

of the relations (3.28)-(3.34). The conditions (4.1) are identically satisfied on the basis of the 
equilibrium equations and the boundary conditions (2.7); thus 

S~t~3do- = S:;(ta3-t-X~tzfl, fl)do- = ~s(x~t311),fldo- = ~LX~t3flnflds = O. 

From (4.2)-(4.4) we obtain the following system for the unknown constants 

4 

Y ,  L sa, = , 
S=I 

4 4 

E t 3 s a s = - - e 3 ,  E L 4 s a ~ = - M 3 ,  (4.8) 
s = l  s = l  

where we used the notations 

L~3 = 

Z~4 = 

L3~ = 

L33 = 

L34 = 

Z41 = 

L42 

L43 

L44 

Ssxe  [C3333 (fl) x ~ + ~ B a ] d o - ,  

[C 3 a x e + ] 

12 [C3333 xc~-l--o-(3c~ ] do , 

. (3)q do- ~ [C3333 -t- 033 A , 

S~ (4) [C33~3 ee~3 xr + a33 ] & ,  

Sg [C2333 X 2 -  C1333 x1 x2-]-,~3~flx~o-(1)] d o ,  

x (2) = SoY [C2333X1 X2 --  C1333 x2 "}-'~3efl ct O'f13 ] do-,  

= 

= I2 [C2323 X 2 -  2C1323x1 x2{- C1313 X2 -I- g3aflx~o-(; )] do-. (4.9) 

Let us prove that the system (4.8) determine uniquely the constants a s. We assumed that the 
internal energy density 
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where 

Saint-Venant's problem for inhomogeneous and anisotropic solids 

~(~) = ~Cijkleijekl , 

is a positive definite quadrat ic  form. 
tt t! Let us consider two elastic states {u~, e~j, t~j} and {u~', e~j, hi}. If we denote 

2c(~', u") = ' " tijeij , 

it follows that 

V(u', u") = V(u", u ') ,  V(u, u) = V(u) .  

Then Betti's formula leads to 

2 Iv U (u', u") dv = Is t'i u'i' da = Is t'[ u' ida.  

Obviously, we have 

2 ~v U(u)dv = ~s t luida.  

The relations (4.5), (4.7) can be written in the form 

4 4 

y, .~u? t,j= y, ~ t!~) 
s = l  s = l  

287 

(4.10) 

(4.11) 

(4:12) 

(4.13) 

(4.14) 

(4.15) 

j'~ t~3 ) da = 0 ,  (s = 1, 2, 3, 4).  (4.22) 

Let us apply the relations (4.13), (4.14) to the elastic states {u! ~), el~ ), t!~)}, ( s=  1, 2, 3, 4). Using 
the expressions of u~ ~), t~ ) given by (4.16) and the relations (4.22) we obtain 

2E~ = I L ~ ,  (r, s = 1, 2, 3, 4).  (4.23) 

Thus, with the help of  (4.17), (4.18), (4.23) we conclude that 

L,~ = L ~ ,  det (Lr~) > 0 ,  (4.24) 

so that the system (4.8) determines uniquely the constants  a~. The considered prob lem is solved. 
On the basis of (3.36) it is easy to see that for homogeneous  and isotropic solids the constants  
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= - -gx3~pq-  , ----- 
u?' a ,3x~+&) .(4) ~ 3 X ~ a + ~ ? )  ug4~=~4) 

4j ) = C , j ~ + ~ I T ,  @ =  Cij3~+~12 ~, 
t{.4~ (4) (4.16) 

t3 = f f i j  - -  Cider3 ~'afl 3 NO �9 

It is easy to show that 
4 

C ( u ) =  ~ C~a~a~, (4.17) 
r , s =  l 

where 

U~ = U(u ~ u ~)) = Us,, (r, s = 1, 2, 3, 4).  (4.18) 

The total energy is 
4 

e = Iv U(u)dv = E E,sa, a~, (4.19) 
r , $ = l  

where 
E,~ = Iv U, sdv . (4.20) 

We  note that 

t! ~) = 0 on S, q~t(s)n..~ = 0 on L ,  (s = 1, 2, 3, 4) (4.21) 

In view of these relations we get 
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Lrs reduce to 

L,I  ~ = E S sx~x~da  - E I ~ ,  L~3 = E A x  ~ , L33 = E A ,  Li4 = O,  

L44 = # lz (x~ z + x2 + x~ (P,2 - x2 P,  1) da - O ,  (4.25) 

where E is Young ' s  modulus,  A is the area of  the cross section and x ~ are the coordinates of  the 
centroid of  Z. The constant  L44 is known  as " torsional  rigidity", and in most  texts it is design- 
ated by D. In  this case the system (4.8) becomes 

1 
Za aa + A x  ~ a 3 = ~ e~113 Ma , (4.26) 

1 
aa x ~  + a2 x~  + a3 -- E A  P3 , 

Da  4 = _ M 3 . 

The constant  a 4 is often denoted by z and the function ~p is known as the torsion function. 

5. Flexure 

The same calculation as in the t reatment  of  the complete  problem is implied in order  to solve the 
flexure problem. For  this reason we shall assume that the loading applied on the end x3 = 0 is 
statically equivalent to a force P(Pi )  and a momen t  M ( M i ) .  

Thus, for x 3 = 0 we have the condit ions 

l,~ t~3da = - P~ , (5.1) 

J's t33 do- = - P3,  (5.2) 

S_r X~ t33 do- ~--/;~B3 M / ~ ,  ( 5 . 3 )  

Iz e3~p x,  ta3 do" = - M 3 . (5.4) 

On  the end located in the plane x 3 = 1 we have the condit ions 

Is t~3 da = - P~, 

I:c t33dff = - P3 , 

I:~ x~t33do- = g~p3Mp - IP~ , 

Ss e3~a x~ tr da = - M 3 . 

(5.5) 
(5.6) 
(5.7) 
(5.8) 

The problem consists in the solving of  the equat ions (2.4), (2.6) with the condit ions (2.7), 
(5.1)-(5.8). 

We try to solve the problem assuming that 
1 2 , 1 3 1 " 

U~ = - - - ~ a ~ x  3 - - a 4  ~;~fl3 xll x 3 - - g b ~ x  3 - ~ b  4 g~fl3 xfl x 2 + 

4 

+ 2 ( a , + x 3 b ~ ) v ~ + v ~ ( x l ,  x : ) ,  
S = l  

u3 = ( a l x l  + a z x z + a 3 ) x 3 + � 8 9  + b 2 x 2 + b 3 ) x ~  + 
4 

4- 2 (as+ x3bs)v(3s)-t-v3(x1 , x2), : (5.9) 
S = I  

where vl s) are the components  of  the displacement vector f rom the problems p(s) (s = 1, 2, 3, 4), 
v, are unknown  functions and a,., br (r = 1, 2, 3, 4) are unknown constants.  

F r o m  (2.4) and (5.9) we obtain 
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tij = Cij33 (a1xl + az Xz W a 3 ) -  Cij~3 c, a~3 ag x~ + Cij33 (bl Xl + bz xz + 
4 

+b3)x3-Cij~3e~a3b, xax3 + Z (as+ x3bs)al~) + sij +ki3 , (5.10) 
s = l  

where 
4 

Sij = CijkflVk, f l '  k i j  = Ci jk3 2 bsV(k s)" (5.11) 
s = l  

The relations (5.10) can be written as 

=~o), ,, ~,(1) (5.12) t i j =  '~ij ~Jv3 '~ i j  

where 
4 

_(0) = Cij33(a1x1+a2xz-}-a3)-Cij~3e~II3a4x# + 2 astiij(S)Wsij +ki j  7~'ij 
s = l  

4- 

= c , . 3 ( b l  xx +b2x2  + Z . (5.13) 
s = l  

The conditions (5.2) (5.4) and (5.6)-(5.8) are equivalent with the following conditions 

(1)  = (5.14) ~ n 3 3 d a = O ,  .[~xjc(31)3da=-P~, l~e3~px~n~13)da O, 

,[ ~(O) da -CO) da ,.v'~33 : - - P 3 ,  Izxc~'~3.~ = e~p3M/r 

-(~ da (5.15) ~2~,3~flX~tfl3 -~ - - M  3 . 

From (5.13) and (5.14) we obtain the following system for the unknown constants b~ 
4 

L~sb ~ = -Pt~6,~, (r = 1, 2, 3, 4), (5.16) 
s = l  

where L,s are given by (4.9) and satisfy (4.24). In what follows we assume that the constants b~ 
are known. 

Consider now the equilibrium equations. From (2.6), (3.29)-(3.31), (5.10)we obtain 

sia,~-[-F i = 0 o n  S ,  (5.17) 

where 

F, = + k, . . . .  (5 .18)  

On the basis of the relations (3.32)-(3.34) the conditions on the lateral surface (2.7) reduce to 

si, n~ = - k i ,  n~ on L . (5.19) 

We consider the generalized plane strain problem (5.11), (5.17), (5.19). It is easy to show that the 
necessary and sufficient conditions to solve this problem are satisfied on the basis of the 
relations (5.16), (4.22). In what follows we assume that the functions v~, s~j are known. 

Let us consider now the conditions (5.15). From (5.13) and (5.15) we obtain the following sys- 
tem for the constants a r 

4 

L ~ a s =  g3~M# - Isx~S33da , 
s = l  

4 

L3~a, = --P3 -- I~$33 da , 
s = l  

4 

2 L4sas= - M  3 -  ~:s ; Si3 = si3 -~- ls (5.20) 
s = l  

The conditions (5.1) and (5.5) are identically satisfied on the basis of the relations (5.14); thus 
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~st~3dcr = ~s(t~3 + x~t3i, i )da  = SL x~t3pnpds  + ~ x ~ t 3 3 , 3 & r  = 

= l ~ x ~ r c ~ d a  = - L .  

The considered problem is solved. 

D. Ies, an 
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